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12 These PROCEEDINGS, pp. 650-660 (Dec., 1931).

13 Though it is very probable that the case C or C’, in which our theorems hold is the
general one for dynamical systems, it is not easy to construct effective examples. (See
footnote 10.) An example, recently constructed by v. Neumann, will be published soon;
it refers to a two-dimensional flow of the following type: the flow takes place in a rec-
tangle, oriented parallel to the X and Y axes, the upper side of which has been replaced
by suitable chosen curve ¥ = F(X). The flow itself is parallel to the positive Y-axis,
and each point X, F(X) has to be identified with the corresponding point X + «, 0.
(The number X + a is to be taken mod. a, where @ is the breadth of the parallelogram
in the direction of the X-axis; « is a number incommensurable with a.) If F(X) and
a are suitably chosen this flow can be shown to fulfill C (and C’).
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I. In a recent issue of these PROCEEDINGS! the author has obtained a
proof of the so-called quasi-ergodic hypothesis. The reader is referred
to that paper for the precise formulation of this hypothesis, which plays
so important a réle in the foundations of classical statistical mechanics,
and thus in the kinetic theory of gasses; the terminology of that paper
will be used throughout this note. The exact statement of the mathe-
matical result obtained in the previous paper by the author is as follows:

Let Q be either the phase-space ® of the mechanical system considered,
or a sub space of & invariant under the transformation (P —> P,
P a point of ®, ¢ the time) induced by the equations of motion.? Let dv
be the volume element defined in Q invariant® under the transformation
P —> P,, uN the Lebesgue measure (or weight) of N(C Q) defined by
means of dv : uN = f,dv. Let the time of sojourn of P, in N during the
time s < 7 < ¢, divided by ¢ — s, be denoted by Z, ,(N; P).

Then there exists a function Z(N; P) such that, as t — s —> + o,
the function of P Z,(N;P) converges, in the sense of ‘“‘strong conver-
gence” in the space of functions of P, to the limit Z(N; P); thatis

lim S | Z(N;P) — Z(N; P) |*dv = 0. (1)
t—s—>+ow Q

This property determines Z(X; P), which function, in our previous
paper, is studied in more detail and calculated explicitly. The condition
for the validity of the so-called quasi-ergotic hypothesis is that Z(N; P)
be independent of P; we have shown in our earlier paper that this will be
true if and only if there exists in © no integral of the equations of motion
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other than one almost everywhere constant (for more details, cf. the
paper in question).

This result was obtained on the basis of a method due to B. O. Koopman*
in which the study of dynamical systems is undertaken with the aid of
certain unitary and Hermitean functional operators, the spectral resolu-
tion of which is made use of systematically. Corresponding with the fact
that this method operates with reference to function space, is the fact that
our result (1) is in terms of ‘“‘strong convergence,” or convergence in the
mean. A natural question to ask is whether our results, e.g., (1), could
not be established in terms of convergence almost everywhere in Q.

Mr. G. D. Birkhoff, to whom we communicated these results orally
in October, 1931, has subsequently succeeded in establishing the above
surmise by means of an extremely astute method of his own in the domain
of point set theory; he has proved, i.e., the existence and equality of the
numerical limits

lim Zy(N; P), lim Zo(N; P)
t—>+ S—>»— o

except on a set of measure zero>—which limits, in virtue to (1), will be
equal to Z(N; P).

In view of these facts, it is of interest to decide which of the two formu-
lations, (1) or (2), corresponds to the actual physical problem of the ergodic
hypothesis. It turns out that the weaker form of statement (1) is sufficient,
—that it, indeed, is the precise mathematical equivalent of the physical
state of affairs. It is to be noted, further, that the knowledge of the
spectral resolution E(A\), which is fundamental in Koopman’s method,!*
enables one to dominate the physical situation here completely; in par-
ticular, it furnishes a numerical estimation of the degree of convergence
of the limiting process connected with the ergodic hypothesis, whereas
Birkhoff’s existence proof for (2) is of a non-constructive character.

II. The physical statement of the problem is as follows:

Consider a function f(P) (in ©) which is a physical quantity referring
to the macroscopic state of the mechanical system (e.g., the pressure of
a gas, the mean energy per degree of freedom or temperature, etc.). f(P)
changes with the time, having at the instant ¢ the value f(P,), so that if
the interval of time s < 7 < ¢is so short that the time taken in the measure-
ment fills it completely, the quantity measured is not f(P) itself but its

t
P / f(P,) dr. Is it, then, possible
to find a constant C (constant with respect to P, C will naturally depend
on f) by whi P

without committing too great an error? (The fact that, if such a C exists

time average for s < 7 < ¢, viz,,

) dr may be replaced in every application
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1 .
at all, the “micro-canonical’”’ mean w0 / f(P) dv may be employed, is
Q

evident.)
The criterion for such a possibility is obviously the following: Can
a constant C be so determined that the statistical dispersion of

1 t
— s f f(P,) dr about C is small, i.e.,

A ti——s/:f(P,) dr = C

for a given ¢ > 0? Now (1) states precisely that this is the case for ¢ — s
sufficiently large, in the case where f(P) is taken to be the characteristic
function of the set N € Q:

2
dv < ¢ 3)

= 1,for Pin N
= 0, otherwise.

) = xN<P){

From this the truth of (3) follows for all f(P), (that is:

1 't
lim f f f(P,) dr — C
t—s—>+ o Q t—s s

(cf. note?); for the set of functions f(P) for which it is valid forms a closed
linear manifold in function space, and such a manifold contains every
f(P) if it contains every xn(P) of finite uN (cf. 1); the integral of | f(P)|
must be finite, as is always the case in the applications.

The statement in terms of probability which corresponds to (2) may
be made as follows (where the theorem of Egoroff has been used, in virtue
of which any almost everywhere convergent sequence of functions will,
for an arbitrary e > 0, converge uniformly except for a set of measure
< €9

For every ¢ > 0 and 6 > O there exists a T = T'(¢,6) such that the

1 [t
: ﬁf(P,) dr—C

We have here a refinement of the statement that the statistical dispersion
is small; but the latter is quite sufficient for all physical applications.

III. The fact that ¢ — s must be ‘“short” in the physical application
and ‘‘infinitely long” in the mathematical theorem (t — s — + o
was premised!) can be explained without inconsistency once the degree
of convergence in (3') is estimated. Such an estimation may be made
with the aid of the method of Koopman.

In the notation of the earlier paper, (3’) states that

lim  [lo,f — Eof |2 = 0
t—s—>+w

2
dv = 0) 3"

occurrence of > 6 for any ¢ > isof probability < e.
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(cf. note,! for this and for the following), and the expression || ... ||2
on the left was calculated to be’

Y S'm_%’k_(L:_s)y .
f—a+ +o (%x(t—s) ¢l EQS I~

It is a simple matter to evaluate this expression when E(M\) is known.
For example, if an interval — ¢ < N < ¢ exists, which contains no part

of the continuous spectrum, and no point spectrum (besides the simple

2
proper value 0), it is readily seen to be = ey t| lf Is)z. In the general case

various formulae can be obtained, for example,?

| (=) o)
(-0 - 5(- 7))

which furnishes an immediate evaluation. In the case mentioned first

N
et — s)

171
all functions f.?

These evaluations could easily be analyzed further, but we shall leave
the matter now. The example was only given to illustrate the use of
Koopman’s method in the setting of physical questions.

1 Proc. Nat. Acad. Sci., 18, 1 (1932).

2 That is, an ‘“‘integral surface,” e.g., an energy surface,

3 In virtue of Liouville’s theorem dv is the usual element of volume in the case @ = &.
4 Proc. Nat. Acad. Sci., 17, 5 (1931).

8 Ibid., 17, 12 (1931).

¢ Paris C. R., 152 (1911).

7 The f appearing there is to be replaced by f — E,f (E, is permutable with every

+e +o
E(\) and gy5); this has for effect that f ° + f replaces the earlier f

[T

‘Separatef +L_o°' to[Lox/Tx+

and not that in}i)it—(i:)s)) <1land = ()T_s)) .
9 It is easily shown, that this only occurs for periodical motions in which all paths
have the same period.

this converging uniformly to O for




